
Operating Systems and
Computer Architecture

How does a computer work?

• Signals control hardware
• Signals can have a high (1) or low (0) values
• Integers are represented as binary strings
• Floats are represented in IEEE754 format

Exponential Notation

The representations differ in that
the decimal place – the “point” --
“floats” to the left or right (with the
appropriate adjustment in the
exponent).

• The following are equivalent representations of 1,234

123,400.0 x 10-2

12,340.0 x 10-1

1,234.0 x 100

123.4 x 101

12.34 x 102

1.234 x 103

0.1234 x 104

Parts of a Floating Point Number

-0.9876 x 10-3

Sign of
mantissa

Location of
decimal point Mantissa

Exponent

Sign of
exponent

Base

IEEE 754 Standard

• Most common standard for representing floating
point numbers

• Single precision: 32 bits, consisting of...
– Sign bit (1 bit)

– Exponent (8 bits)
– Mantissa (23 bits)

• Double precision: 64 bits, consisting of…
– Sign bit (1 bit)

– Exponent (11 bits)
– Mantissa (52 bits)

Single Precision Format

32 bits

Mantissa (23 bits)

Exponent (8 bits)

Sign of mantissa (1 bit)

Normalization

• The mantissa is normalized
• Has an implied decimal place on left

• Has an implied “1” on left of the decimal place
• E.g.,

– Mantissa →
– Represents…

10100000000000000000000

1.1012 = 1.62510

Excess Notation

• To include +ve and –ve exponents, “excess” notation
is used

• Single precision: excess 127
• Double precision: excess 1023

• The value of the exponent stored is larger than the
actual exponent

• E.g., excess 127,
– Exponent →
– Represents…

10000111

135 – 127 = 8

Example

• Single precision
0 10000010 11000000000000000000000

1.112

130 – 127 = 3

0 = positive mantissa

+1.112 x 23 = 1110.02 = 14.010

Hexadecimal

• It is convenient and common to represent the
original floating point number in hexadecimal

• The preceding example…

0 10000010 11000000000000000000000

4 1 6 0 0 0 0 0

Converting from Floating Point

• E.g., What decimal value is represented by the
following 32-bit floating point number?

C17B000016

• Step 1
– Express in binary and find S, E, and M

C17B000016 =

1 10000010 111101100000000000000002

S E M

1 = negative
0 = positive

• Step 2
– Find “real” exponent, n

– n = E – 127
= 100000102 – 127

= 130 – 127
= 3

• Step 3
– Put S, M, and n together to form binary result
– (Don’t forget the implied “1.” on the left of the

mantissa.)
-1.11110112 x 2n =

-1.11110112 x 23 =

-1111.10112

• Step 4
– Express result in decimal
-1111.10112

-15
2-1 = 0.5
2-3 = 0.125
2-4 = 0.0625

0.6875

Answer: -15.6875

Converting to Floating Point

• E.g., Express 36.562510 as a 32-bit floating point
number (in hexadecimal)

• Step 1
– Express original value in binary

36.562510 =

100100.10012

• Step 2
– Normalize

100100.10012 =

1.0010010012 x 25

• Step 3
– Determine S, E, and M

+1.0010010012 x 25

S = 0 (because the value is positive)

MS
n E = n + 127

= 5 + 127
= 132
= 100001002

• Step 4
– Put S, E, and M together to form 32-bit binary

result
0 10000100 001001001000000000000002

S E M

• Step 5
– Express in hexadecimal

0 10000100 001001001000000000000002 =

0100 0010 0001 0010 0100 0000 0000 00002 =

4 2 1 2 4 0 0 016

Answer: 4212400016

User Space
Services / Hypervisor

System Calls
Device Drivers / Hardware Abstraction Layer (HAL)

Kernel / BIOS
Instruction Set Architecture

Hardware

Hardware

• CPU (central processing unit)
– Registers

– Flags
• ALU (Arithmetic Logic Unit)
• FPU (Floating-Point Unit)

• Cache
• RAM/ROM/Flash

• Memory
• DMA (Direct Memory Access)

• Bus

Instruction Set Architecture

• Machine code: chain of instructions in 32/64 bit
binary format

• Assembly: mnemonics which get translated to
machine code

– Low level programming
• Set of mnemonics are the ISA

– Contract between hardware and software
– OS follow that contract

– Programs get compiled into that contract
– Processor supports all the functions specified by the

contract

ISA Types

• CISC: complex instruction set computing
– Include many instructions in the ISA

– CPU tends to be larger and more power consuming
– E.g. INTEL x86

• RISC: reduced instruction set computing
– Support only limited functions

– Hardware can be reduced and more specialized
– Emulate remaining functions (e.g. mul = adds)

– E.g. MIPS, Sparc
• There are no longer traditional RISCs

• Multiple cores tend to be RISCs

x86 General Purpose Registers

• 8 bits
– al and ah, bl and bh, cl and ch, dl and dh

• 16 bits
– ax, bx, cx, dx
• 32 bits

– eax, ebx, ecx, edx
• 64 bits

– rax, rbx, rcx, rdx
• Specialty: a (arithmetic), b (base), c (counter), d

(data)

x86 Other Registers

• ESP: stack pointer
• ESI, EDI: index registers (source, data)
• EBP: frame/base pointer (on stack)

• EIP: instruction pointer
• PC: program counter

• Some segments:
– CS: code segment
– DS: data segment
– SS: stack segment

– ES, FS, GS: extra segments

EFLAGS

• Carry
– unsigned arithmetic out of range

• Overflow
– signed arithmetic out of range

• Sign
– result is negative

• Zero
– result is zero

• Auxiliary Carry
– carry from bit 3 to bit 4

• Parity
– sum of 1 bits is an even number

Register Layout (32 bits)

Register Layout (32 bits)

•AX is the "accumulator''; some of the operations, such as MUL and DIV, require
that one of the operands be in the accumulator. Some other operations, such
as ADD and SUB, may be applied to any of the registers (that is, any of the eight
general- and special-purpose registers) but are more efficient when working with the
accumulator.
•BX is the "base'' register; it is the only general-purpose register which may be used
for indirect addressing. For example, the instruction MOV [BX], AX causes the
contents of AX to be stored in the memory location whose address is given in BX.
•CX is the "count'' register. The looping instructions (LOOP, LOOPE,
and LOOPNE), the shift and rotate instructions
(RCL, RCR, ROL, ROR, SHL, SHR, and SAR), and the string instructions (with
the prefixes REP, REPE, and REPNE) all use the count register to determine how
many times they will repeat.
•DX is the "data'' register; it is used together with AX for the word-
size MUL and DIV operations, and it can also hold the port number for
the IN and OUT instructions, but it is mostly available as a convenient place to store
data, as are all of the other general-purpose registers.

•SP is the stack pointer, indicating the current position of the top of the
stack. You should generally never modify this directly, since the subroutine
and interrupt call-and-return mechanisms depend on the contents of the
stack.
•BP is the base pointer, which can be used for indirect addressing similar to
BX.
•SI is the source index, used as a pointer to the current character being read
in a string instruction (LODS, MOVS, or CMPS). It is also available as an
offset to add to BX or BP when doing indirect addressing; for example, the
instruction MOV [BX+SI], AX copies the contents of AX into the memory
location whose address is the sum of the contents of BX and SI.
•DI is the destination index, used as a pointer to the current character being
written or compared in a string instruction (MOVS, STOS, CMPS,
or SCAS). It is also available as an offset, just like SI.

Register Layout (64 bits)

http://www.codeproject.com/KB/vista/vista_x64/x64_registers.jpg

Floating Point Registers

ST(0)
ST(1)

ST(2)

ST(3)

ST(4)
ST(5)

ST(6)

ST(7)

• Eight 80-bit floating-point data
registers
– ST(0), ST(1), . . . , ST(7)
– arranged in a stack
– used for all floating-point

arithmetic
• Eight 64-bit MMX registers
• Eight 128-bit XMM registers

for single-instruction multiple-
data (SIMD) operations

x86 Instructions

• Typical syntax
– Mnemonic dst, src

• Some instructions
– NOP ; correct way of putting the CPU to sleep

– Mov ax, dx
– Add cx, 8
– Sub bx, 1

– Mul al, 2 ;result is stored in ax
– Div 4 ;ax is an implicit operator

– Jmp
– Loop ;cx is implicit count

– Cmp bx, 0
– Int 24h or 10h ; most common interrupt services

Addressing Modes

• There is always a register in the operation (if it
receives an operand)
• Register (default)

– Only registers are involved
• Memory

– Reading from or writing to memory
• Immediate

– A constant in the instruction
• Direct or Indirect

– Direct: address is on the instruction
– Indirect: address is on another location to be search

Instruction Cycle

What happens during an interrupt?

• Could be explicitly called via int mnemonic.
• An execution is never interrupted

– Can interrupt after or before executing the
instruction.

• From the OS perspective the activation record of the
function is recorded, along with the states of all the

variables

MBR and BIOS

• Master Boot Record (MBR)
– Decides which OS will boot

– Bootloader (e.g. Grub) should be installed on a
dual booting (2 OS) computer

• Basic Input/Output System (BIOS)
– Provides basic IO (as the name implies) to help

booting the machine
– POST test helps check every hardware

OS Kernel

• Main core of the operating system
• Mostly written in C (with many gotos … YES gotos)
• In windows the core libraries are in C:\windows

– Common of viruses to attack this area
• In linux the core is scattered

– /bin contains binaries
– /usr local installs (by user)
– /media mounted drives

– /dev list of devices
• Usb, serials, parallel ports, hard disk, etc.

– /home user directories
– /etc everything else

Device Drivers

• Allow easy access from software to hardware by
forcing a pre-defined interface

– POSIX (Unix)
– Win32 (Windows)

POSIX interface

• Create
• Destroy
• Open
• Close
• Read
• Write
• IOctl

• Could we enforce
security?

POSIX is a family of standards, specified by the IEEE, to
clarify and make uniform the application programming
interfaces (and ancillary issues, such as commandline shell
utilities) provided by Unix-y operating systems. When you
write your programs to rely on POSIX standards, you can be
pretty sure to be able to port them easily among a large
family of Unix derivatives (including Linux, but not limited to
it!); if and when you use some Linux API that's not
standardized as part of Posix, you will have a harder time if
and when you want to port that program or library to other
Unix-y systems (e.g., MacOSX) in the future.

http://en.wikipedia.org/wiki/POSIX
http://www.ieee.org/portal/site

System Calls

• Give the programs access to the HAL
• In C may be called with

– System
– Exec functions

• In Java via the Runtime

Example of System Calls

• System call sequence to copy the contents of one file
to another file

Example of Standard API

System Call Implementation

• Typically, a number associated with each system call
– System-call interface maintains a table indexed

according to these numbers
• The system call interface invokes the intended system

call in OS kernel and returns status of the system call
and any return values

• The caller need know nothing about how the system
call is implemented

– Just needs to obey API and understand what OS
will do as a result call

– Most details of OS interface hidden from
programmer by API

• Managed by run-time support library (set of functions
built into libraries included with compiler)

API – System Call – OS Relationship

System Call Parameter Passing

• Often, more information is required than simply identity of
desired system call

– Exact type and amount of information vary according to
OS and call

• Three general methods used to pass parameters to the OS
– Simplest: pass the parameters in registers
• In some cases, may be more parameters than registers

– Parameters stored in a block, or table, in memory, and
address of block passed as a parameter in a register

• This approach taken by Linux and Solaris
– Parameters placed, or pushed, onto the stack by the

program and popped off the stack by the operating
system

– Block and stack methods do not limit the number or
length of parameters being passed

Parameter Passing via Table

Types of System Calls

• Process control
– create process, terminate process

– end, abort
– load, execute

– get process attributes, set process attributes
– wait for time

– wait event, signal event
– allocate and free memory

– Dump memory if error
– Debugger for determining bugs, single step execution

– Locks for managing access to shared data between
processes

Types of System Calls

• File management
– create file, delete file

– open, close file
– read, write, reposition

– get and set file attributes
• Device management

– request device, release device
– read, write, reposition

– get device attributes, set device attributes
– logically attach or detach devices

Types of System Calls (Cont.)

• Information maintenance
– get time or date, set time or date
– get system data, set system data

– get and set process, file, or device attributes
• Communications

– create, delete communication connection
– send, receive messages if message passing model to

host name or process name
• From client to server

– Shared-memory model create and gain access to
memory regions

– transfer status information
– attach and detach remote devices

Types of System Calls (Cont.)

• Protection
– Control access to resources

– Get and set permissions
– Allow and deny user access

Examples of Windows and Unix System Calls

Services

• File system
• Network
• Printer
• Email

• Timed services
– Cron

– Automatic updates

Hypervisor

• A program that acts as the master boot record of the
virtual operating systems

• Will be covering more on VMs (virtual machines) in
the course

User space

• Applications
• Shell

• Utilities
• Databases

Process and Threads

• A process is an application which passing through its life
cycle (i.e. not dead)

Some concepts

• Context switching
– Occurs when a process is put to sleep so that another can

continue running
– Gives the illusion of multitasking

• Deadlock
– If A is waiting for B, B is waiting for C, and C is waiting for A
– In other words a deadlock is a state where no process can

continue
– Avoid it with good process philosophies

• Diners, Readers/Writers, Producer/Consumer
• A priority queue is a good data structure here

The Dining Philosophers Problem

• Philosophers
– think

– take forks (one at a time)
– eat

– put forks (one at a time)
• Eating requires 2 forks
• Pick one fork at a time

• How to prevent deadlock?
• What about starvation?

• What about concurrency?

Dining philosophers: definition

• Each process needs two resources
• Every pair of processes compete for a specific resource

• A process may proceed only if it is assigned both
resources

• Every process that is waiting for a resource should sleep
(be blocked)

• Every process that releases its two resources must wake-
up the two competing processes for these resources, if

they are interested

An incorrect naïve solution

(means “waiting for this fork”)

• The solution
– A philosopher first

gets
– only then it tries to

take the 2 forks.

Dining philosophers: textbook solution

Process and Threads (cont.)

• Process have a process id (pid) and parent process id (ppid)
– The main process does not have a parent (i.e. ppid = 0)

– Multiple processes share the same memory space
• Pros: easy to communicate

• Cons: hard to sync (problem when writing)

• Threads
– Local sub-process inside of a process
– May be known or unknown to the OS

– Multiple processes have their own memory space:
• Pros: not much syncing required

• Cons: hard to intercommunicate them

Writing Process and Threads in C/C++

• Fork() creates a process (child) and invokes it
– Returns the pid of child to parent

– Returns pid to child
– A negative number uppon error

• Threads are implemented via pthread.h
– Simply call the create function and pass the

function that will be executed by it

Some shells

• Unix
– bash
– sh
– csh

• Windows
– cmd

Useful Shell Commands (Unix)

• cd: change directory
• ls: list files in directory

• pwd: shows current path
• ifconfig: show/configure network interfaces

• cat: display content of a file
• pico/nano/vim: some text editors

• ps: shows process list
• top: shows shell task manager
• ping: test network connectivity

• traceroute: trace hops in a connection
• ssh: opens ssh connection

• Help:
– --help flag on commands

– Man pages (e.g. man man)

Useful Shell Commands (Windows)

• cd: change directory
• dir: list files in directory

• cd with no params: shows current path
• ipconfig: show/configure network interfaces

• edit: some text editors
• taskmgr: task manager

• regedit: OS register modification
• msconfig: shows startup/boot configuration

• ping: test network connectivity
• tracert: trace hops in a connection

• ssh: opens ssh connection
• Help:

– Typically /? on commands

Programming with C/C++ and ASM

• Notation used is AT&T ASM (more common among platforms)
– Biggest change are explicit size of operand

• Addb, addw, instead of add
– Destination and source are exchanged

• i = i + 3
• add ax, 3 ; INTEL
• add 3, ax ; AT&T

– Some notations
• Binary

• Decimal
• Hex

• Registers
• Memory

Basic ASM

• asm or __asm__ directive
– asm(“command”) //in C

– E.g. asm(“add ax, 9”); //in C
• From ASM
• .global myfunction

• Then in C invoke myfunction

Extended ASM

• Allows better communication between C and ASM
• Asm(“command” :
output separated by commas :

input separated by commas :
optional registers (avoid them));

e.g.
int x = 2;

int result = 0;
int c = 3;

__asm__("movl %1, %%eax;"
"addl $3, %%eax;" : "=a" (result) : "r" (x));

printf("%d\n", result); //what does this line print?
__asm__("imull %%ebx, %%eax;" : "=a" (result) : "a" (result), "b" (c));

printf("%d\n", result); //how about this one

Why is C and ASM important?

• Low level programming gives you better control of
the machine

• Allows specifying efficiency in instruction
– Compiler doesn’t throw surprises

– Faster execution
• Memory mapping

– Parts/devices on the machine are mapped to a
specific memory

Operating Systems
Introduction to
Processes

Process Concept

• Process is a program in execution; forms the basis of all
computation; process execution must progress in sequential

fashion.
• Program is a passive entity stored on disk (executable file),
Process is an active entity; A program becomes a process when

executable file is loaded into memory.
• Execution of program is started via CLI entry of its name,

GUI mouse clicks, etc.
• A process is an instance of a running program; it can be

assigned to, and executed on, a processor.
• Related terms for Process: Job, Step, Load Module, Task,

Thread.

Process Parts

• A process includes three segments/sections:
1. Program: code/text.

2. Data: global variables and heap
• Heap contains memory dynamically allocated during run time.

3. Stack: temporary data
• Procedure/Function parameters, return addresses,

local variables.

• Current activity of a program includes its Context:
program counter, state, processor registers, etc.

• One program can be several processes:
– Multiple users executing the same Sequential program.

– Concurrent program running several process.

Process in Memory (1)

Processes in Memory (2)

General Structure of OS Control Tables

Typical Process Table Implementation

Process Attributes

• Process ID
• Parent process ID
• User ID
• Process state/priority
• Program counter
• CPU registers
• Memory management information
• I/O status information
• Access Control
• Accounting information

Typical process table entry

Fields of a typical process table entry

Components of Process Control Block (PCB)

• Process Control Block (PCB) – IBM name for
information associated with each process –

its context!
• PCB (execution context) is the data needed (process

attributes) by OS to control process:
1. Process location information

2. Process identification information
3. Processor state information
4. Process control information

Process Control Block (PCB)

Process Location Information

• Each process image in memory:
– may not occupy a contiguous range of addresses
(depends on memory management scheme used).

– both a private and shared memory address space
can be used.

• The location if each process image is pointed to by an
entry in the process table.

• For the OS to manage the process, at least part of its
image must be brought into main memory.

Process Images in Memory

Process Identification Information

• A few numeric identifiers may be used:
– Unique process identifier (PID) –

• indexes (directly or indirectly) into the process table.

– User identifier (UID) –
• the user who is responsible for the job.

– Identifier of the process that created this process
(PPID).

• Maybe symbolic names that are related to numeric
identifiers.

Processor State Information

• Contents of processor registers:
– User-visible registers

– Control and status registers
– Stack pointers

• Program Status Word (PSW)
– contains status information

– Example: the EFLAGS register on Pentium
machines.

Process Control Information

• scheduling and state information:
– Process state (i.e., running, ready, blocked...)

– Priority of the process
– Event for which the process is waiting (if blocked).

• data structuring information
– may hold pointers to other PCBs for process

queues, parent-child relationships and other
structures.

Process Control Information

• Inter-process communication –
– may hold flags and signals for IPC.

• Resource ownership and utilization –
– resource in use: open files, I/O devices...

– history of usage (of CPU time, I/O...).

• Process privileges (Access control) –
– access to certain memory locations, to resources, etc…

• Memory management –
– pointers to segment/page tables assigned to this process.

Process States

• Let us start with three states:
1) Running state –

• the process that gets executed (single CPU);
its instructions are being executed.

2) Ready state –
• any process that is ready to be executed; the process

is waiting to be assigned to a processor.

3) Waiting/Blocked state –
• when a process cannot execute until its I/O

completes or some other event occurs.

A Three-state Process Model

Ready Running

Waiting

Event
Occurs

Dispatch

Time-out

Event
Wait

Process Transitions (1)

• Ready –> Running
– When it is time, the dispatcher selects a new

process to run.

• Running –> Ready
– the running process has expired his time

slot.
– the running process gets interrupted

because a higher priority process is in the
ready state.

Process Transitions (2)

• Running –> Waiting
– When a process requests something for which it

must wait:
• a service that the OS is not ready to perform.

• an access to a resource not yet available.
• initiates I/O and must wait for the result.

• waiting for a process to provide input.

• Waiting –> Ready
– When the event for which it was waiting occurs.

Process List Structures

Five-state Process Model

Other Useful States (1)

• New state –
– OS has performed the necessary actions to

create the process:
• has created a process identifier.
• has created tables needed to manage the

process.

– but has not yet committed to execute the
process (not yet admitted):
• because resources are limited.

Other Useful States (2)

• Terminated state –
– Program termination moves the process to this

state.
– It is no longer eligible for execution.

– Tables and other info are temporarily preserved
for auxiliary program –

• Example: accounting program that cumulates resource
usage for billing the users.

• The process (and its tables) gets deleted when the
data is no more needed.

A. Frank - P. Weisberg

Reasons for Process Creation

• System initialization.
• Submission of a batch job.

• User logs on.
• Created by OS to provide a service to a user (e.g.,

printing a file).
• A user request to create a new process.

• Spawned by an existing process
– a program can dictate the creation of a number of

processes.

Process Creation (1)

• Parent process create children processes, which, in
turn create other processes, forming a tree of
processes.

• Possible resource sharing:
– Parent and children share all resources.
– Children share subset of parent’s resources.
– Parent and child share no resources.

• Possible execution:
– Parent and children execute concurrently.
– Parent waits until children terminate.

A tree of processes on UNIX

A tree of processes on typical Solaris

Process Creation (2)

• Assign a unique process identifier (PID).
• Allocate space for the process image.
• Initialize process control block

– many default values (e.g., state is New, no I/O
devices or files...).

• Set up appropriate linkages
– Ex: add new process to linked list used for the

scheduling queue.

Process Creation (3)

• Address space
– Child duplicate of parent.
– Child has a program loaded into it.

• UNIX examples
– fork system call creates new process.
– exec system call used after a

fork to replace the process’
memory space with a
new program.

Process Creation (3)

C Program Forking Separate Process

int main()
{
pid_t pid;

/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
exit(-1);

}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent will wait for the child to complete */
wait (NULL);
printf ("Child Complete");
exit(0);

}
}

When does a process get terminated?

• Batch job issues Halt instruction.
• User logs off.
• Process executes a service request to

terminate.
• Parent kills child process.
• Error and fault conditions.

Reasons for Process Termination (1)

• Normal/Error/Fatal exit.
• Time limit exceeded
• Memory unavailable
• Memory bounds violation
• Protection error

– example: write to read-only file

• Arithmetic error
• Time overrun

– process waited longer than a specified maximum for an
event.

Reasons for Process Termination (2)

• I/O failure
• Invalid instruction

– happens when trying to execute data.
• Privileged instruction

• Operating system intervention
– such as when deadlock occurs.

• Parent request to terminate one child.
• Parent terminates so child processes terminate.

Process Termination

• Process executes last statement and asks the
operating system to terminate it (exit):
– Output data from child to parent (via wait).

– Process’ resources are deallocated by operating system.
• Parent may terminate execution of child processes

(abort):
– Child has exceeded allocated resources.

– Mission assigned to child is no longer required.
– If Parent is exiting:

• Some OSs do not allow child to continue if its parent
terminates.

• Cascading termination – all children terminated.

UNIX SVR4 Process States

• User Running Executing in user mode.
• Kernel Running Executing in kernel mode.

• Ready to Run, in Memory Ready to run as soon as the kernel schedules it.
• Asleep in Memory Unable to execute until an event occurs; process is in

main memory (a blocked state).
• Ready to Run, Swapped Process is ready to run, but the swapper must swap

the process into main memory before the kernel can schedule it to execute.
• Sleeping, Swapped The process is awaiting an event and has been

swapped to secondary storage (a blocked state).
• Preempted Process is returning from kernel to user mode, but the kernel

preempts it and does a process switch to schedule another process.
• Created Process is newly created and not yet ready to run.

• Zombie Process no longer exists, but it leaves a record for its parent
process to collect.

UNIX SVR4 States Process Model

UNIX Process Control

Process: A Context for Computation

A process is largely defined by:
• Its CPU state (register values).

• Its address space (memory contents).
• Its environment (as reflected in operating

system tables).

Process layout

Process Creation

• System call:
– Child - 0.
– Parent - PID of the child.

• System call algorithm:
– Allocate a slot in process table.
– Allocate PID.
– Create a logical copy of the parent context.
– Return values.

#include <sys/types.h>
#include <unistd.h>
pid_t fork(void);

Fork Example

if ((pid = fork()) < 0)

error

If (pid == 0)

{ code for child }

else

{ code for parent }

Before calling fork()

void f (int x)
{

int z;
fork();

}

void g()
{

char a;
int i;
f (42);

}

int main()
{

g();
return 0;

}

RET addr 1

RET addr 2

Before fork()

RET addr 1
a
i

42
RET addr 2

z
SP

U
ns

ue
d

St
ac

k
St

ac
k

fo
r B

oo
t P

ro
ce

ss

After calling fork()

void f (int x)
{

int z;
fork();

}

void g()
{

char a;
int i;
f (42);

}

int main ()
{

g();
return 0;

}

RET addr 1

RET addr 2

Location 3

RET addr 1
a
i

42
RET addr 2

z
SP

St
ac

k
fo

r n
ew

 P
ro

ce
ss

Child SP

RET addr 1
a
i

42
RET addr 2

z

St
ac

k
fo

r B
oo

t P
ro

ce
ss

Example: Race Conditions
#include <iostream>
#include <unistd.h>
#include <sys/types.h>

int main()
{

pid_t pid;
if ((pid = fork()) < 0)

exit(1); //error
if(pid != 0) {

for(int i = 0; i < 100; i++)
cout<<"Parent process "<< i <<endl;

} else {
for(int i = 100; i < 200; i++)
cout <<"Child process "<< i << endl;

}
return 0;

}

Process Termination

• Normal Termination:
– Executing a return from the main function.

– Calling the exit function. (ANSI C)
– Calling the _exit function. (Sys call)

• Abnormal Termination:
– When a process receives certain signals.

Normal Process Termination

• System call:
– Status: IPC.
– NEVER returns.

• System call algorithm:
– Mask Signals.
– Close open files.
– Release memory.
– Save the process exit status.
– Set the process state to ZOMBIE.

#include <stdlib.h>

void exit (int status);

Awaiting Process Termination Bach

#include <sys/types.h>
#include <sys/wait.h>
pid_t wait(int *status);

• System call:
– Returns the PID of a zombie child -1 when no children exist.
– Status is the exit status of the child process.
– Wait can block the caller until a child process terminates.

• System call algorithm:
– Search for a zombie child of the process.
– Extract PID and status of the zombie child.
– Release the process table slot.

Orphans and Zombies

• When a child exits when its parent is not
currently executing a wait(), a zombie

emerges.
– A zombie is not really a process as it has

terminated but the system retains an entry in the
process table.

– A zombie is put to rest when the parent finally
executes a wait().

• A child process whose parent has terminated
is referred to as orphan.

• When a parent terminates, orphans and
zombies are adopted by the init process

(prosess-id:0) of the system.

Invoking other programs

• The exec invokes another program, overlaying
the memory space with a copy executable file.
• The contents of the user-level context is

accessible through exec parameters.
exec(filename, argv, envp);

notable exec properties

• an exec call transforms the calling process
by loading a new program in its memory

space.
• the exec does not create a new sub-process.

• unlike the fork there is no return from a
successful exec.

System call algorithm

• Determine the file properties
– Determine If the file is an executable.

– Determine if the user has permissions.
– Determine the file’s layout.

• Copy exec arguments to system space.
• Detach old memory regions.

• Allocate new regions.
• Copy exec arguments.

Exec example

If((pid = fork()) < 0)

error;

if (pid== 0){

exec(arguments);

exit(-1);

}

// parent continues here

fork/wait/execv Example
#include <iostream>
#include <unistd.h>
#include <sys/wait.h>
using namespace std;
int main()
{

int x = 42;
pid_t pid;
if ((pid = fork()) < 0)
exit(1);

if(pid != 0) {
int status;
cout << "Parent process. x=" << x << endl;
wait (&status);

} else {
cout << "Child process. x=" << x << endl;
char* args[] = {"ls", NULL};
execv ("/bin/ls", args);
cout << "Never reached" << endl;

}
return 0;

}

The Shell

• The shell read a command line from STDIN and
execute.

• The shell has to main commands:
– Internal commands. (cd)
– External commands. (cp)

• External commands may run
foreground/background.

Signals

• Signals are notifications sent to a process in
order to notify the process of events.

– Kernel.
– Processes (system call kill)

• The kernel send a signal by setting a bit in the
field of the process table entry.

• A process can remember different types of
signals, but not the number of signals from each

type.

Sending Signals

Using the keyboard:
– Ctrl-C: Causes the system to send an INT

signal (SIGINT) to the running process.
Using shell kill command:

– The kill command has the following format:
kill [options] pid

Handling Signals

• The kernel handles signals in the context of
the process that receives them so process

must run to handle signals.
• There are three case for handling signals:

– The process exits. (default action)
– The process ignores.

– The process execute particular function.
oldfun = signal(signum,newfun);

Non-Catchable Signals

• Most signals may be caught by the process, but
there are a few signals that the process cannot

catch, and cause the process to terminate.
– For example: KILL and STOP.

• If you install no signal handlers of your own the
runtime environment sets up a set of default signal

handlers.
– For example:

• The default signal handler for the TERM
signal calls the exit().

• The default handler for the ABRT is to dump
the process's memory image into a file, and

then exit.

Summary

1. Each signal may have a signal handler,
which is a function that gets called when the

process receives that signal.
2. When the signal is sent to the process, the

operating system stops the execution of the
process, and "forces" it to call the signal

handler function.
3. When that signal handler function returns,

the process continues execution from
wherever it happened to be before the signal

was received, as if this interruption never
occurred.

Signal Handlers - Example

#include <stdio.h>
#include <unistd.h>
#include <signal.h>

void catch_int(int sig_num) {
signal(SIGINT, catch_int); //install again!

printf("Don't do that\n");
fflush(stdout);

}

int main(int argc, char* argv[]) {
signal(SIGINT, catch_int);

for (;;)
pause();//wait till receives a signal.

}

Avoiding Signal Races - Masking
Signals

• The occurrence of a second signal while the
signal handler function executes.

– The second signal can be of different type than the
one being handled, or even of the same type.

• The system also contains some features that will
allow us to block signals from being processed.
– A global context which affects all signal handlers, or a

per-signal type context.

• #include <stdio.h>
• #include <stdlib.h>
• #include <unistd.h>

• int main(int argc, char *argv[]) {
• int pipefd[2];
• pid_t ls_pid, wc_pid;

• pipe(pipefd);

• if ((ls_pid = fork()) == 0) {

• dup2(pipefd[1],STDOUT_FILENO);
• close(pipefd[0]);

• execl("/bin/ls", "ls", 0);
• perror("exec ls failed");
• exit(EXIT_FAILURE);
• }

close(pipefd[0]);
close(pipefd[1]);
int status;
int pid = waitpid(ls_pid, &status, 0);
pid = waitpid(wc_pid, &status, 0);

	Operating Systems and Computer Architecture
	How does a computer work?
	Exponential Notation
	Parts of a Floating Point Number
	IEEE 754 Standard
	Single Precision Format
	Normalization
	Excess Notation
	Example
	Hexadecimal
	Converting from Floating Point
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Converting to Floating Point
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Hardware
	Instruction Set Architecture
	ISA Types
	x86 General Purpose Registers
	x86 Other Registers
	EFLAGS
	Register Layout (32 bits)
	Register Layout (32 bits)
	Slide Number 31
	Register Layout (64 bits)
	Floating Point Registers
	x86 Instructions
	Addressing Modes
	Instruction Cycle
	What happens during an interrupt?
	MBR and BIOS
	OS Kernel
	Device Drivers
	POSIX interface
	System Calls
	Example of System Calls
	Example of Standard API
	System Call Implementation
	API – System Call – OS Relationship
	System Call Parameter Passing
	Parameter Passing via Table
	Types of System Calls
	Types of System Calls
	Types of System Calls (Cont.)
	Types of System Calls (Cont.)
	Examples of Windows and Unix System Calls
	Services
	Hypervisor
	User space
	Process and Threads
	Some concepts
	The Dining Philosophers Problem
	Dining philosophers: definition
	An incorrect naïve solution
	Dining philosophers: textbook solution
	Process and Threads (cont.)
	Writing Process and Threads in C/C++
	Some shells
	Useful Shell Commands (Unix)
	Useful Shell Commands (Windows)
	Programming with C/C++ and ASM
	Basic ASM
	Extended ASM
	Why is C and ASM important?
	Operating Systems
	Process Concept
	Process Parts
	Process in Memory (1)
	Processes in Memory (2)
	General Structure of OS Control Tables
	Typical Process Table Implementation
	Process Attributes
	Typical process table entry
	Fields of a typical process table entry
	Components of Process Control Block (PCB)
	 Process Control Block (PCB)
	Process Location Information
	Process Images in Memory
	Process Identification Information
	Processor State Information
	Process Control Information
	Process Control Information
	Process States
	A Three-state Process Model
	Process Transitions (1)
	Process Transitions (2)
	Process List Structures
	Five-state Process Model
	Other Useful States (1)
	Other Useful States (2)
	Reasons for Process Creation
	Process Creation (1)
	A tree of processes on UNIX
	A tree of processes on typical Solaris
	Process Creation (2)
	Process Creation (3)
	Process Creation (3)
	C Program Forking Separate Process
	When does a process get terminated?
	Reasons for Process Termination (1)
	Reasons for Process Termination (2)
	Process Termination
	UNIX SVR4 Process States
	UNIX SVR4 States Process Model
	UNIX Process Control�
	Process: A Context for Computation
	Process layout
	Process Creation �
	Fork Example
	 Before calling fork()
	 After calling fork()
	Example: Race Conditions
	Process Termination �
	Normal Process Termination
	Awaiting Process Termination Bach
	Orphans and Zombies
	Invoking other programs�
	notable exec properties
	System call algorithm
	Exec example
	fork/wait/execv Example
	The Shell �
	Signals �
	Sending Signals
	Handling Signals
	Non-Catchable Signals
	Summary
	Signal Handlers - Example
	Avoiding Signal Races - Masking Signals
	Slide Number 137
	Slide Number 138

